Modelling and Intelligent Control of an Elastic Link Robot Manipulator
نویسنده
چکیده
In this paper, precise control of the end‐point position of a planar single‐link elastic manipulator robot is discussed. The Timoshenko beam theory (TBT) has been used to characterize the structural link elasticity including important damping mechanisms. A suitable nonlinear model is derived based on the Lagrangian assumed modes method. Elastic link manipulators are classified as systems possessing highly complex dynamics. In addition, the environment in which they operate may have a lot of disturbances. These give rise to special problems that may be solved using intelligent control techniques. The application of two advanced control strategies based on fuzzy set theory is investigated. The first closed‐loop control scheme to be applied is the standard Proportional‐Derivative (PD) type fuzzy logic controller (FLC), also known as PD‐type Mamdani’s FLC (MPDFLC). Then, a genetic algorithm (GA) is used to optimize the MPDFLC parameters with innovative tuning procedures. Both the MPDFLC and the GA optimized FLC (GAOFLC) are implemented and tested to achieve a precise control of the manipulator end‐point. The performances of the adopted closed‐loop intelligent control strategies are examined via simulation experiments.
منابع مشابه
adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network
This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network, for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...
متن کاملEstimation and Calibration of Robot Link Parameters with Intelligent Techniques
Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...
متن کاملOptimal Trajectory of Flexible Manipulator with Maximum Load Carrying Capacity
In this paper, a new formulation along with numerical solution for the problem of finding a point-to-point trajectory with maximum load carrying capacities for flexible manipulators is proposed. For rigid manipulators, the major limiting factor in determining the Dynamic Load Carrying Capacity (DLCC) is the joint actuator capacity. The flexibility exhibited by light weight robots or by robots o...
متن کاملStiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملDynamic Modeling of a Robot Manipulator for Opening the Tap Hole of an Electric Arc Furnace
The electric arc furnace (EAF) is used to produce high quality steel from steel scraps. The EAF uses plasma arc to generate heat for melting scarp or direct reduced iron (DRI). The liquid metal should be drained from the tap hole. Manual tapping operation of the EAF in the hot environment around the furnace is a potentially dangerous and time consuming task for the workers. Therefore, it is ess...
متن کامل